dapper.met.adapters.fluxnet¶
dapper module: met.adapters.fluxnet.
Functions
Infer native FLUXNET timestep from timestamp columns in hours. |
Classes
AmeriFlux FLUXNET → ELM adapter. |
- class dapper.met.adapters.fluxnet.FluxnetAdapter[source]¶
Bases:
BaseAdapterAmeriFlux FLUXNET → ELM adapter.
Assumptions¶
User provides a single FLUXNET CSV (FULLSET or SUBSET) per run.
CSV contains TIMESTAMP_START/TIMESTAMP_END (or TIMESTAMP) columns.
Missing values are coded as -9999.
Exporter supplies df_merged with [‘gid’,’lat’,’lon’,’zone’, …] already merged in from df_loc.
- DRIVER_TAG = 'FLUXNET'¶
- SOURCE_NAME = 'FLUXNET (AmeriFlux ONEFlux) tower data'¶
- discover_files(csv_directory, calendar)[source]¶
Return (csv_files, start_year, end_year).
- Parameters:
calendar (str)
-
native_dt_hours:
Optional[float]¶
- preprocess_shard(df_merged, start_year, end_year, calendar, dformat)[source]¶
Return a DataFrame with at least: [‘gid’,’time’,’LATIXY’,’LONGXY’,’zone’, <ELM vars>]
- Return type:
DataFrame- Parameters:
df_merged (DataFrame)
start_year (int)
end_year (int)
calendar (str)
dformat (str)
- required_vars(dformat)[source]¶
Optional: return a list of ELM var short names that this adapter will produce for the given dformat (‘BYPASS’ or ‘DATM_MODE’). Exporter doesn’t require it.
- Parameters:
dformat (str)
-
resolution:
Optional[str]¶
- dapper.met.adapters.fluxnet.infer_fluxnet_dt_hours(df)[source]¶
Infer native FLUXNET timestep from timestamp columns in hours.
- Handles:
half-hourly/hourly/weekly: TIMESTAMP_START, TIMESTAMP_END (YYYYMMDDHHMM)
daily/monthly/yearly: TIMESTAMP (YYYYMMDD or YYYYMM, etc.)
- Returns:
Approximate timestep in hours.
- Return type:
float
- Raises:
ValueError – If no suitable timestamp columns are found or dt cannot be inferred.
- Parameters:
df (DataFrame)