dapper.landuse package¶
Submodules¶
dapper.landuse.landuse module¶
dapper module: landuse.landuse.
- dapper.landuse.landuse.export_landuse_timeseries(domain, *, src_path, out_dir, filename='landuse_timeseries.nc', overwrite=False, append_attrs=None, **kwargs)[source]¶
Export landuse timeseries NetCDF(s) for a Domain.
- Output layout:
domain.mode=’cellset’: <out_dir>/landuse_timeseries.nc
domain.mode=’sites’ : <out_dir>/<gid>/landuse_timeseries.nc
- Return type:
dict[str,Path]- Returns:
dict[run_id, output_path]
- Parameters:
domain (Domain)
src_path (str | Path)
out_dir (str | Path)
filename (str)
overwrite (bool)
Notes
This is mainly useful for ‘sites’ mode (and is still supported for cellset).
- dapper.landuse.landuse.sample_landuse_timeseries(src_path, df_loc, out_path, *, gid_col='gid', lat_col='lat', lon_col='lon', weight_col='weight', default_weight=1.0, lat_dim='lsmlat', lon_dim='lsmlon', lat_var='LATIXY', lon_var='LONGXY', lon_wrap='auto', output_lon_wrap=None, decode_times=False, chunks=None, compress=True, complevel=4, vars_include=None, vars_drop=None, sampling_method='nearest', targets=None, agg_policy=None, write_zonal_mapping=True, append_attrs=None)[source]¶
Sample a landuse time series dataset either by nearest-point sampling (existing behavior) or by zonal intersection of target polygons with the source grid.
- Return type:
tuple[Path, pd.DataFrame]
- Parameters:
src_path (str | Path)
df_loc (pd.DataFrame)
out_path (str | Path)
gid_col (str)
lat_col (str)
lon_col (str)
weight_col (str)
default_weight (float)
lat_dim (str)
lon_dim (str)
lat_var (str | None)
lon_var (str | None)
lon_wrap (sampling.LonWrap)
output_lon_wrap (sampling.LonWrap | None)
decode_times (bool)
chunks (dict | None)
compress (bool)
complevel (int)
vars_include (Sequence[str] | None)
vars_drop (Sequence[str] | None)
sampling_method (Literal['nearest', 'zonal'])
targets (gpd.GeoDataFrame | None)
agg_policy (dict[str, str] | None)
write_zonal_mapping (bool)
append_attrs (dict | None)
- Returns (out_path, df_summary)
nearest: df_summary is df_loc aligned to sampled cells (includes i_lat/i_lon if available)
zonal : df_summary includes sample_ncells and sample_area_total_m2 per gid
Module contents¶
dapper module: landuse.__init__.